OSI-Schichtenmodell

Erläuterung:

<Warum OSI-Schichtenmodell? Welche Vorteile haben sich durch die Einführung im Vergleich zu vorher ergeben?>

- Das OSI-Schichtenmodell (Open Systems Interconnection model) ermöglicht es verschiedener Produkte und Hersteller kompatibel zu gestalten, welches die Interoperabilität (Funktion von Informationssystemen für den Datenaustausch und Weitergabe der Daten) zwischen Systemen fördert. Vorher gab es nur herstellerabhängige (proprietäre) Lösungen.
- Die Entwicklung und Fehlerbehebung wird auch erleichtert, dadurch, dass das OSI-Modell die sieben Schichten unabhängig voneinander trennt.
- Jede Schicht kann, ohne Abhängigkeit einer anderen Schicht, von den anderen implementiert, geändert oder aktualisiert werden. Jedoch nur wenn diese die Standards für ihre jeweilige Schicht enthält. Beispiel: Wechsel von IPv4 auf IPv6.

Aufbau OSI-Schichtenmodell:

Schicht Nr / Bezeichnung	Beschreibung / Funktion	Beispiel (HW, Protokoll)
1 - Bitübertragungsschicht (physical layer)	Zuständig für die physische Übertragung der Daten. Hier werden elektrische, optische oder Funk- Signale über Kabel oder Funkstrecken gesendet und zu Bits umgewandelt.	Steckernormen (RJ-45), Spannungspegel, Kodierungen (z.B. Manchester-Code)
	Das Übertragungsmedium selbst gehört nicht zur Schicht 1!	
2 - Sicherungsschicht (data link layer)	Stellt eine fehlerfreie Verbindung zwischen zwei direkt verbundenen Geräten sicher und regelt den Zugang zum Übertragungsmedium.	Ein/e Switch/ Bridge, der Datenpakete anhand von MAC – Adressen zuordnet.
	Fasst/Baut Bits zu einem Ethernet-Frame zusammen.	Ethernet-Frame CSMA/CA, CSMA/CD
	Schicht 2 kennt die Mac- Adressen und kann somit im lokalen Netzwerk adressieren.	
3 - Vermittlungsschicht (network layer)	Verantwortlich für das Routing, d. h. die Wegwahl für die Datenpakete über verschiedene Netzwerke	Ein Router oder Layer3 – Switch, der Pakete

	hinweg, basierend auf IP – Adressen. Hier wird das Endgerät adressiert.	zwischen verschiedenen Netzwerken weiterleiten (IPv4 / IPv6)
4 - Transportschicht (transport layer)	Zuständig für sichere, lückenlose und transparente End-to-End- Datenübertragung. Hier wird die Anwendung auf dem Endgerät adressiert (per Port) <ip-adresse:port> = Socket Baut aus angekommenen Paketen einen Datenstrom. Diese müssen ggf. sortiert werden (Überholung von Paketen wegen des Routings)</ip-adresse:port>	TCP und UDP sorgen dafür, dass Daten fehlerfrei (TCP) ankommen bzw. Besonders schnell übertragen werden (UDP) TCP (E-Mails, Downloads und Webanwendungen) arbeitet verbindungsorientiert (mit Quittung) und UDP (bspw. Livestreams, VoIP und Online-Gaming) verbindungslos Firewall
5 - Sitzungsschicht (session layer)	Arbeitet wie ein Moderator. Organisiert die Sitzung zwischen zwei Systemen, einschließlich des Verbindungsaufbaus, - verwaltung und -abbau.	Eine gesteuerte Sitzung zwischen einem Client und einem Server, wie beim Abrufen von E- Mails.
6 - Darstellungsschicht (presentation layer)	Arbeitet wie ein Übersetzer. Stellt sicher, dass die Daten in einem für die Anwendung verständlichen Format bereitgestellt werden. Hier erfolgt ggf. auch eine Verschlüsselung und auch Komprimierung	Die Konvertierungen von Dateiformaten, etwa JPEG zu BMP, oder das Verschlüsseln und Komprimieren von Daten.
7 - Anwendungsschicht (application layer)	Die Schnittstelle zur Software, mit der Benutzer interagieren Die Anwendung selbst gehört nicht zur Schicht 7!	Protokolle: HTTP für den Zugriff auf Websites oder FTP zum Übertragen von Dateien.

Vergleich mit dem TCP/IP-Modell:

< Vergleich des Konzepts und der Schichten>

Das TCP/IP-Schichtenmodell wird häufiger in der Praxis angewendet und ist eine vereinfachte Version des OSI-Modells. Es besteht aus vier Schichten, die mehrere OSI-Schichten zusammenfassen

Netzzungangsschicht (entspricht OSI-Schicht 1 und 2)

Zuständig für die physische Übertragung und Zugriffkontrolle des Netzwerks

Internet-Schicht (entspricht OSI-Schicht 3)

Ermöglicht die Datenweiterleitung und das Routing über das Netzwerk.

Transportschicht (entspricht OSI-Schicht 4)

Gewährleistet die Datenübertragung zwischen den Endgeräten.

Anwendungsschicht (entspricht den OSI-Schichten 5 bis 7)

Hier laufen die Anwendungen und die Kommunikation wird auf Programmierebene verwaltet.

Das TCP/IP-Modell hat nur **vier Schichten** (Anwendung, Transport, Internet, Netzwerkzugriff) und ist im Vergleich zum OSI-Modell praxisorientierter und auf das Internet abgestimmt.

Das OSI-Schichtenmodell ist und bleibt eine essenzielle Grundlage, da es eine generelle bzw. universale Grundlage bietet, welches Netzwerke systematisch beschreibt.

OSI Anwendung Darstellung Kommunikation Transport Vermittlung Sicherung Bitübertragung Techbuyer

OSI vs TCP/IP-Schichtenmodell

OSI-Schicht	TCP/IP-Schicht	Beispiel	
7. Anwendung		HTTP, FTP, SMTP, POP,	
6. Darstellung	4. Anwendung		
5. Sitzung		TLS, SOCKS	
4. Transport	3. Transport	TCP, UDP,	
	2. Internet		
	4 10 10 10 10 10 10 10 10 10 10 10 10 10	Ethernet, IEEE.802.11,	
	1. Netzzugang	Ethernet, IEEE.802.11,	

Erläuterung und Beratung bzgl. Investition:

Unterschiede und Einsatzzweck, Kaufmännische Betrachtung>

Merkmal	Layer-2-switch	Layer-3-Switch	Layer-4-Switch
OSI-Schicht	Sicherungsschich	Vermittlungsschich	Transportschicht (4)
	t (2)	t (3)	
Adressierung	MAC-Adresse	IP-Adresse	IP-Adresse + Ports
Hauptfunktion	Frame-Switching	Routing zwischen	Anwendungsspezifische
	innerhalb eines	Subnetzen/VLANs	s Switching
	LANs		
Routing	Nein	Ja	Ja
VLAN-Unterstützung	Ja	Ja inkl. Inter-VLAN-	Ja
		Routing	
Anwendungserkennun	Nein	Nein	Ja (z.B. Web-Traffic,
g			VoIP)
Load Balancing	Nein	Nein	Ja
Einsatzbereich	Kleinere LANs	Große,	Rechenzentren,
		segmentierte	Lastverteilung
		Netzwerke	

Die Auswahl des Switches hängt vom Einsatzgebiet ab

• Layer2-Switch:

Reicht für die Verteilung innerhalb eines Netzwerks (LANs) vollkommen aus und muss dort nicht ersetzt werden

• Layer3-Switch:

Wird benötigt, wenn zwischen verschiedenen Teilnetzen geroutet wird.

• Layer4-Switch:

Wird benötigt sobald Ports verwendet werden,

Diese Switches sind ideal, wenn das Netzwerk Anwendungen mit besonderen Anforderungen an die Bandbreite (z. B. für Voice-over-IP oder Video) unterstützen muss.

- Ports priorisieren: Quality of Service, QoS
- Ports blocken: Firewall